## Application of Spectral Clustering Algorithm

Danielle Middlebrooks dmiddle1@math.umd.edu Advisor: Kasso Okoudjou kasso@umd.edu Department of Mathematics

University of Maryland- College Park Advance Scientific Computing II

May 11, 2016

## Outline

#### 1 Project Overview

- 2 Results from MNIST Database
- 3 Adding New Datapoint
- 4 Results from Face Database
- 5 Project Schedule

#### 6 References

# **Background Information**

- Spectral Clustering is technique that makes use of the spectrum of the similarity matrix derived from the data set in order to cluster the data set into different clusters.
- Implement an algorithm that groups same digits from the MNIST Handwritten digits database in the same cluster.
- In practice this algorithm and my code will work for any database that wants to group together similar objects.







◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# Motivation

Motivated by the N cut problem.

$$\min \mathsf{NCut}(A_1,...,A_k) := \min \frac{1}{2} \sum_{i=1}^k \frac{W(A_i,\bar{A}_i)}{\mathsf{vol}(A_i)}$$

where

- A is a subset of the vertices V
- the compliment  $\bar{A} = V \setminus A$
- $W(A_i, A_j) = \sum_{i \in A_i, j \in A_j} w_{ij}$
- $vol(A) = \sum_{i \in A} d_i$

The idea is that the eigenvectors serve as indicator functions in order to easily cluster the database in a reduced dimension.

## Implementation

- Personal Laptop: Macbook Pro.
  - Matlab R2016b
  - 4GB Memory
- Desktop provided by Norbert Wiener Center

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

- Matlab R2015b
- 128GB Memory

#### Normalized Laplacian Matrix

• Guassian Similarity Function:  $s(X_i, X_j) = e^{\frac{-||X_i - X_j||^2}{2\sigma^2}}$  where  $\sigma$  is a parameter.

• *W*- Adjacency matrix 
$$w_{ij} = \begin{cases} 1, & \text{if } s(X_i, X_j) > \epsilon \\ 0, & \text{otherwise} \end{cases}$$

- *D* Degree matrix
- Unnormalized Laplacian Matrix: L = D W
- Normalized Laplacian Matrix:  $L_{sym} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$

## Normalized Laplacian Matrix

- As validation we know the smallest eigenvalue of the Normalized Laplacian will be zero with eigenvector D<sup>1/2</sup>1
- To choose the best parameters, we implement the entire algorithm a number of times, changing epsilon each time until we reach some tolerance for the total error

 $\sigma = 2000$ 

$$\epsilon = 0.3575$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧ ▶ ○ ♀ ♡ ♀ (♡ 7/27

# Modified B Matrix

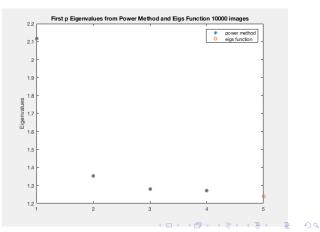
- Normalized Laplacian Matrix:  $L_{sym} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2} = I - B$
- Computing the first *p* eigenvalues of *B* using the power method give us the largest eigenvalues in magnitude.
- Let  $B_{mod} = B + \mu I$  where  $\mu = \max(sum(B,2))$

8/27

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

# Computing first *p* Eigenvectors

Using the Power Method with Deflation on  $B_{mod}$  we compute the first p eigenvalues.



Computing first *p* Eigenvectors

By changing convergence criterion and increasing max iterations we obtain

|   | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ |  |  |
|---|-------------|-------------|-------------|-------------|--|--|
| r | 6.90E-15    | 1.18E-14    | 2.44E-10    | 2.84E-09    |  |  |

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

10/27

 $\begin{aligned} r = & \operatorname{norm}\left(\frac{B}{\lambda}v - \frac{B}{\lambda^*}v^*, 2\right) \\ & (\lambda, v) \text{ came from power method} \\ & (\lambda^*, v^*) \text{ came from eigs function} \end{aligned}$ 

## Row Normalization

Let  $T \in \mathbb{R}^{n \times k}$  be the eigenvector matrix with norm 1. Set

$$t_{i,j} = rac{v_{i,j}}{(\sum_{
ho} v_{i,
ho}^2)^{1/2}}$$

| <i>v</i> <sub>11</sub> | <i>v</i> <sub>12</sub> | <i>v</i> <sub>13</sub> |    | $v_{1p}$        |               | $t_{11}$        | $t_{12}$        | $t_{13}$        |   | $t_{1p}$        |  |
|------------------------|------------------------|------------------------|----|-----------------|---------------|-----------------|-----------------|-----------------|---|-----------------|--|
|                        | ÷                      | ÷                      | ۰. | ÷               |               | :               | ÷               | ÷               | · | :               |  |
| v <sub>i1</sub>        | v <sub>i2</sub>        | v <sub>i3</sub>        |    | v <sub>ip</sub> | $\Rightarrow$ | t <sub>i1</sub> | t <sub>i2</sub> | t <sub>i3</sub> |   | t <sub>ip</sub> |  |
| ÷                      | ÷                      | ÷                      | ·  | ÷               |               | :               | ÷               | ÷               | · | :               |  |
| $v_{n1}$               | v <sub>n2</sub>        | v <sub>n3</sub>        |    | v <sub>np</sub> |               | $t_{n1}$        | t <sub>n2</sub> | t <sub>n3</sub> |   | t <sub>np</sub> |  |

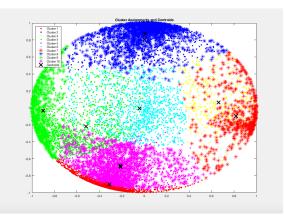
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めんぐ

# K-means Clustering

Let  $y_i$  be the *i*th row of T

- Randomly select k cluster centroids, z<sub>i</sub>.
- Calculate the distance between each  $y_i$  and  $z_j$ .
- Assign the data point to the closest centroid.
- Recalculate centroids and distances from data points to new centroids.
- If no data point was reassigned then stop, else reassign data points and repeat.

## K-means Clustering



Assign the original point  $X_i$  to cluster j if and only if row i of the matrix T was assigned to cluster j.

### **Cluster Classification**

Next we classify each cluster as a particular digit.

| Digit         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  |
|---------------|---|---|---|---|---|---|---|---|---|----|
| Cluster Class | 6 | 5 | 2 | 3 | 7 | 9 | 8 | 4 | 1 | 10 |

Run time: 23mins

<ロ > < 母 > < 臣 > < 臣 > < 臣 > ○ Q () 14/27

#### Results

#### Below is a table of error for each cluster on 2000 $Error = \frac{Number of incorrect digits in cluster}{Total number of digits in cluster}$

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 78% | 82% | 48% | 65% | 39% | 13% | 69% | 58% | 65% | 72% |

 $\label{eq:overall constraint} Overall \ Error{=} \frac{\text{Total number of incorrect digits}}{\text{Total number of digits}} = 59\%$ 

Overall Error on 1000 images=64% Overall Error on 10000 images=49%

#### Results

Cluster 6

# 

Cluster 4



Cluster 3



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんぐ

### Addition of New Datapoint- Standard Method

#### Proposition (Nystrom Method)

Method for out-of-sample extension Goal: Use a similarity kernel function K(x, y) in order to embed the new data point x in the reduced dimension. Benjio, Y, et al. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering

・ロト ・ (型) ・ (目) ・ (目) ・ (目) ・ (17/27

## Addition of New Datapoint- Another Method?

We can determine which cluster a single new datapoint belongs to without re running the entire code.

- Create a similarity vector, denoted as  $X_{sim}$  of 0's and 1's
- Normalize the similarity vector by multiplying it by  $D^{1/2}$
- Compute the projection of the similarity vector onto the eigenvectors of the Normalized Laplacian matrix and normalize. Denoted as C<sub>sim</sub> that lives in ℝ<sup>p</sup>.
- Find the centroid that is closest to  $C_{sim}$



#### Implementation on a random subset of 100 digits.

|                          | Error | Runtime |
|--------------------------|-------|---------|
| Averaged over 100 digits | 61%   | 12.6sec |

# Yale Face Database

- Contains 165 grayscale images of 15 individuals.
- 11 images per subject, one per different facial expression or configuration.
- Each image is 32x32 pixels



・<一</li>
 ・<三</li>
 ・<三</li>
 ・<三</li>
 ・<三</li>
 ・<三</li>
 ・<二</li>
 20/27

## Results

Using 10 subjects and 5 images per subject with  $\sigma=$  2000 and  $\epsilon=$  0.465

| Image         | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 |
|---------------|---|---|---|---|---|---|---|----|---|----|
| Cluster Class | 5 | 6 | 8 | 4 | 2 | 7 | 9 | 10 | 3 | 1  |

Below is a table of error for each cluster classification  $Error = \frac{Number \text{ of incorrect faces in cluster}}{Total number \text{ of faces in cluster}}$ 

| 1   | 2   | 3   | 4   | 5  | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|
| 71% | 33% | 60% | 83% | 0% | 66% | 44% | 40% | 60% | 66% |

 $\label{eq:overall constraint} Overall \ \mbox{Error}{=} \frac{\mbox{Total number of incorrect faces}}{\mbox{Total number of faces}} = 54\%$ 

## Results

#### Cluster 5



#### Cluster 4



#### Cluster 2



▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

# **Project Schedule**

- End of October/ Early November: Construct Similarity Graph and Normalized Laplacian matrix. ✓
- End of November/ Early December: Compute first k eigenvectors validate this. √
- February: Normalize the rows of matrix of eigenvectors and perform dimension reduction.√
- $\bullet\,$  March/April: Cluster the points using k-means and validate this step.  $\checkmark\,$
- End of Spring semester: Implement entire algorithm, optimize and obtain final results. ✓



- Spectral Clustering is a relatively good clustering technique.
- Better performance when dataset is sufficiently large.
- May obtain better results by using a different Normalized Laplacian or different similarity graph.

# References

[1.] Von Cybernetics, U. A Tutorial on Spectral Clustering. Statistics and Computing, 7 (2007) 4.

[2.] Shi, J. and Malik J. Normalized cuts and image segmentation.IEEE Transations on Pattern Analysis and Machine Intelligence, 22 (2000) 8.

[3.] Chung, Fan. Spectral Graph Theory. N.p.: American Mathematical Society. Regional Conference Series in Mathematics. 1997. Ser. 92.

[4.] Vishnoi, Nisheeth K.Lx = b Laplacian Solvers and their Algorithmic Applications. N.p.: Foundations and Trends in Theoretical Computer Science, 2012.

[5.] Benjio, Y, Paiement, J, Vincent, P. Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. 2003

Thank you



#### Proposition

Let  $K(x_i, x_j)$  denote a kernel function of  $L_{sym}$  such that  $L_{sym}(i, j) = K(x_i, x_j)$ . Let  $(v_k, \lambda_k)$  be an (eigenvector, eigenvalue) pair that solves  $L_{sym}v_k = \lambda_k v_k$ . Let  $(f_k, \lambda'_k)$  be an (eigenfunction, eigenvalue) pair that solves  $Kf_k = \lambda'_k f_k$ . Then  $y_k(x)$ is the embedding associated with a new datapoint x.

$$\lambda'_{k} = \frac{1}{n}\lambda_{k}$$

$$f_{k}(x) = \frac{\sqrt{n}}{\lambda_{k}}\sum_{i=1}^{n}v_{ik}K(x, x_{j})$$

$$y_{k}(x) = \frac{f_{k}(x)}{\sqrt{n}} = \frac{1}{\lambda_{k}}\sum_{i=1}^{n}v_{ik}K(x, x_{j})$$